About the school

The School of Pharmacy at the Hebrew University, one of the world leaders in pharmacist training and basic research in the pharmaceutical sciences, was established in 1953.
The school prepares its graduates to practice the pharmacy profession, provides them with a scientific and professional foundation, and offers higher studies in pharmacology, medicinal chemistry and pharmacy sciences (M.Sc. and Ph.D.), as well as doctoral studies in clinical pharmacy (Pharm.D.).
Graduates of the school are integrated in community pharmacy (community pharmacies, private and institutional), clinical pharmacy (hospitals and health funds), the pharmaceutical industry, the biological, chemical and biotechnology industries, the pharmacy administration and science and research institutions in Israel and abroad.
The school conducts extensive scientific research in the fields of pharmaceutical sciences and life sciences, and dozens of articles are published each year in the leading press in the world of science.
The School of Pharmacy is part of the Faculty of Medicine, located on the Ein Kerem campus of the Hebrew University and works closely with physicians and researchers from Hadassah Hospital.



Weekly seminar 13.01.22

Thu, 13/01/202212:00-13:00

Weekly seminar 06.01.22

Thu, 06/01/202212:00-13:00
All events >>

Recent Publications

This review focuses on the improved topical treatment of various medical skin conditions by the use of drugs delivered from carriers containing phospholipid soft vesicles. Topical drug delivery has many advantages over other ways of administration, having increased patient compliance, avoiding the first-pass effect following oral drug administration or not requesting multiple doses administration. However, the skin barrier prevents the access of the applied drug, affecting its therapeutic activity. Carriers containing phospholipid soft vesicles are a new approach to enhance drug delivery into the skin and to improve the treatment outcome. These vesicles contain molecules that have the property to fluidize the phospholipid bilayers generating the soft vesicle and allowing it to penetrate into the deep skin layers. Ethosomes, glycerosomes and transethosomes are soft vesicles containing ethanol, glycerol or a mixture of ethanol and a surfactant, respectively. We review a large number of publications on the research carried out in vitro, in vivo in animal models and in humans in clinical studies, with compositions containing various active molecules for treatment of skin medical conditions including skin infections, skin inflammation, psoriasis, skin cancer, acne vulgaris, hair loss, psoriasis and skin aging.
This is a comprehensive review on the use of phospholipid nanovesicles for dermal/transdermal and nasal drug administration. Phospholipid-based vesicular carriers have been widely investigated for enhanced drug delivery via dermal/transdermal routes. Classic phospholipid vesicles, liposomes, do not penetrate the deep layers of the skin, but remain confined to the upper stratum corneum. The literature describes several approaches with the aim of altering the properties of these vesicles to improve their penetration properties. Transfersomes and ethosomes are the most investigated penetration-enhancing phospholipid nanovesicles, obtained by the incorporation of surfactant edge activators and high concentrations of ethanol, respectively. These two types of vesicles differ in terms of their structure, characteristics, mechanism of action and mode of application on the skin. Edge activators contribute to the deformability and elasticity of transfersomes, enabling them to penetrate through pores much smaller than their own size. The ethanol high concentration in ethosomes generates a soft vesicle by fluidizing the phospholipid bilayers, allowing the vesicle to penetrate deeper into the skin. Glycerosomes and transethosomes, phospholipid vesicles containing glycerol or a mixture of ethanol and edge activators, respectively, are also covered. This review discusses the effects of edge activators, ethanol and glycerol on the phospholipid vesicle, emphasizing the differences between a soft and an elastic nanovesicle, and presents their different preparation methods. To date, these differences have not been comparatively discussed. The review presents a large number of active molecules incorporated in these carriers and investigated in vitro, in vivo or in clinical human tests.
Michal Weitman, Corina Bejar, Michal Melamed, Tehilla Weill, Inessa Yanovsky, Shani Zeeli, Abraham Nudelman, and Marta Weinstock. 2021. “Comparison of the tissue distribution and metabolism of AN1284, a potent anti-inflammatory agent, after subcutaneous and oral administration in mice.” Naunyn-Schmiedeberg's Archives of Pharmacology. Abstract
This study is to compare the tissue distribution and metabolism of AN1284 after subcutaneous and oral administration at doses causing maximal reductions in IL-6 in plasma and tissues of mice. Anti-inflammatory activity of AN1284 and its metabolites was detected in lipopolysaccharide (LPS) activated RAW 264.7 macrophages. Mice were given AN1284 by injection or gavage, 15 min before LPS. IL-6 protein levels were measured after 4 h. Using a liquid chromatography/mass spectrometry method we developed, we showed that AN1284 is rapidly metabolized to the indole (AN1422), a 7-OH derivative (AN1280) and its glucuronide. AN1422 has weaker anti-inflammatory activity than AN1284 in LPS-activated macrophages and in mice. AN1284 (0.5 mg/kg) caused maximal reductions in IL-6 in the plasma, brain, and liver when injected subcutaneously and after gavage only in the liver. Similar reductions in the plasma and brain required a dose of 2.5 mg/kg, which resulted in 5.5-fold higher hepatic levels than after injection of 0.5 mg/kg, but 7, 11, and 19-fold lower ones in the plasma, brain, and kidneys, respectively. Hepatic concentrations produced by AN1284 were 2.5 mg/kg/day given by subcutaneously implanted mini-pumps that were only 12% of the peak levels seen after acute injection of 0.5 mg/kg. Similar hepatic concentrations were obtained by (1 mg/kg/day), administered in the drinking fluid. These were sufficient to decrease hepatocellular damage and liver triglycerides in previous experiments in diabetic mice. AN1284 can be given orally by a method of continuous release to treat chronic liver disease, and its preferential concentration in the liver should limit any adverse effects.
Hadas Pahima, Pier Giorgio Puzzovio, and Francesca Levi-Schaffer. 2021. “A novel mast cell-dependent allergic peritonitis model.” Clinical and Experimental Immunology, 205, 3, Pp. 306–315. Abstract
Typical murine models of allergic inflammation are induced by the combination of ovalbumin and aluminum hydroxide. However, accumulating evidence indicates that, in models of asthma and atopic dermatitis, allergic inflammation can be generated in the absence of aluminum hydroxide. Moreover, co-administration of Staphylococcus aureus enterotoxin B with ovalbumin can enhance inflammation. The objective of this study was to establish a rapid and mast cell-dependent murine model of allergic inflammation by inducing allergic peritonitis using ovalbumin and S. aureus enterotoxin B. Allergic peritonitis was induced in C57BL/6 mice by subcutaneous sensitization and intraperitoneal challenge with ovalbumin and S. aureus enterotoxin B. Disease characteristics were assessed by flow cytometry, enzyme-linked immunosorbent assay (ELISA), trypan blue exclusion and colorimetric assays. The time–course of the allergic peritonitis revealed a peak of peritoneal inflammation 48 h after challenge, as assessed by total cells and eosinophil counts. The decrease of cell numbers started 96 h post-challenge, with complete clearance within 168 h. Moreover, significantly higher levels of tryptase and increased vascular permeability were found 30 min following challenge. Allergic inflammation induction by ovalbumin and S. aureus enterotoxin B was impaired in mast cell-deficient mice and partially restored by mice reconstitution with bone marrow-derived mast cells, indicating the mast cell role in this model. We present a novel model of allergic peritonitis that is mast cell-dependent, simple and robust. Moreover, the use of S. aureus enterotoxin B better resembles human allergic inflammation, which is known to be characterized by the colonization of S. aureus.
More >>