About the school


The School of Pharmacy at the Hebrew University, one of the world leaders in pharmacist training and basic research in the pharmaceutical sciences, was established in 1953.
The school prepares its graduates to practice the pharmacy profession, provides them with a scientific and professional foundation, and offers higher studies in pharmacology, medicinal chemistry and pharmacy sciences (M.Sc. and Ph.D.), as well as doctoral studies in clinical pharmacy (Pharm.D.).
Graduates of the school are integrated in community pharmacy (community pharmacies, private and institutional), clinical pharmacy (hospitals and health funds), the pharmaceutical industry, the biological, chemical and biotechnology industries, the pharmacy administration and science and research institutions in Israel and abroad.
The school conducts extensive scientific research in the fields of pharmaceutical sciences and life sciences, and dozens of articles are published each year in the leading press in the world of science.
The School of Pharmacy is part of the Faculty of Medicine, located on the Ein Kerem campus of the Hebrew University and works closely with physicians and researchers from Hadassah Hospital.
 

Read more >>

Recent Publications

Aniv Mann Brukner, Sarah Billington, Mony Benifla, Tot Bui Nguyen, Hadas Han, Odeya Bennett, Tal Gilboa, Dana Blatch, Yakov Fellig, Olga Volkov, Jashvant D. Unadkat, Dana Ekstein, and Sara Eyal. 2021. “Abundance of P-glycoprotein and Breast Cancer Resistance Protein Measured by Targeted Proteomics in Human Epileptogenic Brain Tissue.” Molecular Pharmaceutics, 18, 6, Pp. 2263–2273. Abstract
Our goal was to measure the absolute differential abundance of key drug transporters in human epileptogenic brain tissue and to compare them between patients and at various distances from the epileptogenic zone within the same patient. Transporter protein abundance was quantified in brain tissue homogenates from patients who underwent epilepsy surgery, using targeted proteomics, and correlations with clinical and tissue characteristics were assessed. Fourteen brain samples (including four epileptogenic hippocampal samples) were collected from nine patients. Among the quantifiable drug transporters, the abundance (median, range) ranked: breast cancer resistance protein (ABCG2/BCRP; 0.55, 0.01-3.26 pmol/g tissue) > P-glycoprotein (ABCB1/MDR1; 0.30, 0.02-1.15 pmol/g tissue) > equilibrative nucleoside transporter 1 (SLC29A1/ENT1; 0.06, 0.001-0.35 pmol/g tissue). The ABCB1/ABCG2 ratio (mean 0.27, range 0.08-0.47) was comparable with literature values from nonepileptogenic brain tissue (mean 0.5-0.8). Transporter abundance was lower in the hippocampi than in the less epileptogenic neocortex of the same patients. ABCG2/BCRP and ABCB1/MDR1 expression strongly correlated with that of glucose transporter 1 (SLC2A1/GLUT1) (r = 0.97, p < 0.001; r = 0.90, p < 0.01, respectively). Low transporter abundance was found in patients with overt vascular pathology, whereas the highest abundance was seen in a sample with normally appearing blood vessels. In conclusion, drug transporter abundance highly varies across patients and between epileptogenic and less epileptogenic brain tissue of the same patient. The strong correlation in abundance of ABCB1/MDR1, ABCG2/BCRP, and SLC2A1/GLUT1 suggests variation in the content of the functional vasculature within the tissue samples. The epileptogenic tissue can be depleted of key drug transport mechanisms, warranting consideration when selecting treatments for patients with drug-resistant epilepsy.
Carmil Azran, Nirvana Hanhan-Shamshoum, Tujan Irshied, Tomer Ben-Shushan, Dror Dicker, Arik Dahan, and Ilan Matok. 2021. “Hypothyroidism and levothyroxine therapy following bariatric surgery: a systematic review, meta-analysis, network meta-analysis, and meta-regression.” Surgery for Obesity and Related Diseases, 17, 6, Pp. 1206–1217. Abstract
Background: Many health benefits of bariatric surgery are known and well-studied, but there is scarce data on the benefits of bariatric surgery on the thyroid function. Objective: We aimed to make a meta-analysis regarding the impact of bariatric surgery on thyroid-stimulating hormone (TSH) levels, levothyroxine dose, and the status of subclinical hypothyroidism. Setting: Systematic review and meta-analysis. Methods: PubMed, EMBASE, and Cochrane Library were searched up to December 2020 for relevant clinical studies. Random-effects model was used to pool results. Network meta-analysis was performed, incorporating direct and indirect comparisons among different types of bariatric surgery. Meta-regression analysis was performed to evaluate the impact of moderator variables on TSH levels and required levothyroxine dose after surgery. We followed the PRISMA guidelines for data selection and extraction. PROSPERO registry number: CRD42018105739. Results: A total of 28 studies involving 1284 patients were included. There was a statistically significant decrease in TSH levels after bariatric surgery (mean difference = −1.66 mU/L, 95%CI [−2.29, −1.03], P <.0001). In meta-regression analysis, we found that the following moderator variables: length of follow-up, mean age, baseline TSH, and preoperative thyroid function, could explain 1%, 43%, 68%, and 88% of the between-study variance, respectively. Furthermore, subclinical hypothyroidism was completely resolved in 87% of patients following bariatric surgery. In addition, there was a statistically significant decrease of levothyroxine dose in frank hypothyroid patients following bariatric surgery (mean difference = −13.20 mcg/d, 95%CI [−19.69, −6.71]). In network meta-analysis, we found that discontinuing or decreasing levothyroxine dose was significant following Roux-en-Y gastric bypass, 1 anastomosis gastric bypass, and sleeve gastrectomy, (OR = 31.02, 95%CI [10.34, 93.08]), (OR = 41.73, 95%CI [2.04, 854.69]), (OR = 104.03, 95%CI [35.79, 302.38]), respectively. Conclusions: Based on our meta-analysis, bariatric surgery is associated with the resolution of subclinical hypothyroidism, a decrease in TSH levels, and a decrease in levothyroxine dose.
Michal Weitman, Corina Bejar, Michal Melamed, Tehilla Weill, Inessa Yanovsky, Shani Zeeli, Abraham Nudelman, and Marta Weinstock. 2021. “Comparison of the tissue distribution and metabolism of AN1284, a potent anti-inflammatory agent, after subcutaneous and oral administration in mice.” Naunyn-Schmiedeberg's Archives of Pharmacology. Abstract
This study is to compare the tissue distribution and metabolism of AN1284 after subcutaneous and oral administration at doses causing maximal reductions in IL-6 in plasma and tissues of mice. Anti-inflammatory activity of AN1284 and its metabolites was detected in lipopolysaccharide (LPS) activated RAW 264.7 macrophages. Mice were given AN1284 by injection or gavage, 15 min before LPS. IL-6 protein levels were measured after 4 h. Using a liquid chromatography/mass spectrometry method we developed, we showed that AN1284 is rapidly metabolized to the indole (AN1422), a 7-OH derivative (AN1280) and its glucuronide. AN1422 has weaker anti-inflammatory activity than AN1284 in LPS-activated macrophages and in mice. AN1284 (0.5 mg/kg) caused maximal reductions in IL-6 in the plasma, brain, and liver when injected subcutaneously and after gavage only in the liver. Similar reductions in the plasma and brain required a dose of 2.5 mg/kg, which resulted in 5.5-fold higher hepatic levels than after injection of 0.5 mg/kg, but 7, 11, and 19-fold lower ones in the plasma, brain, and kidneys, respectively. Hepatic concentrations produced by AN1284 were 2.5 mg/kg/day given by subcutaneously implanted mini-pumps that were only 12% of the peak levels seen after acute injection of 0.5 mg/kg. Similar hepatic concentrations were obtained by (1 mg/kg/day), administered in the drinking fluid. These were sufficient to decrease hepatocellular damage and liver triglycerides in previous experiments in diabetic mice. AN1284 can be given orally by a method of continuous release to treat chronic liver disease, and its preferential concentration in the liver should limit any adverse effects.
More >>